Note: Modification of this document may be made any time at the professor’s discretion.
I. Project Submittals

This handout describes the required format for submitting programming project assignments and the grading project policy. All projects must use this format and the final submittal must be a bound report. Each assignment will be submitted in a clear plastic binder with a firm attached USB flash drive.

The remainder of this handout contains a template for a project submittal, showing these parts:

1. A title page.

2. A problem description section (Problem statement, Input, Processing, Output).
3. A diagram section: (UML class diagram and flowchart or pseudocode)
4. Sample inputs and results

5. A source code listing
Please incorporate the two cover pages at the beginning of your source code listing as follows:

 Course Name (CMPS-378)

Fall 2016
R 6:50 – 10:00 pm

Project #: Enter number or final
Title: Enter title
Due Date: Enter date

GROUP #:

Grade:

e-mail: your e-mail
Submitted by Your first and last name

major: Computer Science/ Engineering concentration: Internet Programming

	Y

I=

N
	Description – 10%

 Incomplete
	Y

I

N
	Design – 15%
UML and flowchart; pseudocode - if asked
	Y

I

N
	Code – 50% highlight and comments piece of the code which you had to add or modify (worth 10 %)

	Y

I

N
	Test – 25%
Test plan (4 test cases – include boundary testing) with screenshot results

 Grade:

e-mail: JWolski@laverne.edu

 Submitted by 2nd student name

major: Computer Science/ Engineering
 concentration: specify here
	Y

I=

N
	Description – 10%

 Incomplete
	Y

I

N
	Design – 15%
UML and flowchart; pseudocode - if asked
	Y

I

N
	Code – 50% highlight and comments piece of the code which you had to add or modify (worth 10 %)

	Y

I

N
	Test – 25%
Test plan (4 test cases – include boundary testing) with screenshot results

Submitted to

Prof. Jozef Goetz

University of LA Verne, La Verne

Project Evaluation

A. The problem statement or specification of the problem (10%)--A clear, correct description of a problem: describe input, calculation and output phases.
1a. Input

If your program has a user interface, describe it here. Describe the input data.

1b. Processing

Explains the purpose and the design of your program. It can include discussion the method used to solve the problem.

1c. Output

Describe the output data.
Use the following format as in the example:

1a. Input
The user is asked to enter three integers which are stored in three separate variables. The input is done through a console application.
1b. Processing

The purpose of the program is to calculate the maximum, the minimum, and the sum of the numbers input by the user. This is all done in the program’s main method. The minimum and maximum numbers are determined through a series of “if” statements. The sum is calculated by adding the three input numbers together.

1c. Output

The program asks the user for three integers. The program then displays the minimum and maximum numbers entered by the user. The sum of the input numbers is calculated and is also displayed to the user.
B. Design (15%): a UML class diagram (see chapter 4) and a flowchart; pseudocode - if asked.
A flowchart should be provided for the Main method (a console application) and for event handler methods in a case of a Window application. See flowchart examples in the 3_Flowchart Examples.doc document and the professor’s Lecture Notes. Provide a high level flowchart for applications consisting of many classes with inheritance and polymorphism features.

C. Sample Inputs and Results (25%) - Provide screenshots of at least four (4) sets of sample inputs (test cases) and results including boundary testing. Boundary testing or boundary value analysis, is where test cases are generated using the extremes of the input domain, e.g. maximum, minimum, just inside/outside boundaries, typical values, and error values. Capture of any test data files content used as input to your program. Capture the screen using ALT + PrntScrn keys. Use “echo printing” i.e. printing out the input values.
a. In a case of a console application use an outer loop statement to run a new set of data until a user enter special value e.g. “-1” or “quit”.

b. Prove that a 100 percent of the time works every time for the conditions defined in problem statement.
D. Source Code (50%) - highlight (use yellow color) elements of code which you had to add or modify in comparison to the original code, otherwise expect up to 10% reduction of the project grade.
1. Describe input, calculation and output phases.
/********************place in your main source code as first few lines**********************

* Name: Alex Berdkowski

* Class: CPMS 378
* Assignment #: 1, Arithmetic, Smallest and Largest

* Date Due: 9/09/16

* Problem: (Explains the purpose and the design of your program. It can include

 discussion the method used to solve the problem). Find the minimum, maximum, and the sum of three integers input by the user.

* Input: The user is asked to enter three integers:

 int num1, // declare first number

 num2, // declare second number
 num3; // declare third number
* Calculation: The maximum, the minimum, and the sum of the numbers are calculated.

 * Output: The set of numbers, then the maximum, the minimum, and the sum of the numbers

 are displayed to the user:

 int sum, // declare sum of numbers
 average, // declare average of numbers
 product, // declare product of numbers
 smallest, // declare smallest of numbers
 largest; // declare largest of numbers
**/

Moreover, each method (if you are asked) should have a header with a method name, programmer name, date and a description.

//********************** place in your method source code as first few lines***************************************

*method GetInches()

*Description: Number of inches of rain for numberOfDays are read from a file

and their sum is returned in totalRain.

*Input:

*Type
Variable
Description

int numberOfDays; // number of days in calculation

ifstream rainFile; // data file

*Output:

float totalRain; // total accumulated rain

*Returns:

float totalRain; // total accumulated rain

*Called by:

main()

*Calls:

nothing

**/
2. Each time when you change or insert a code you need to include your personal comments.

3. All Addition/ Modification/Deletion/Replacement should be abreviated to NEW/MOD/DEL/REP respectively.
4. Students should follow the following format for comments for the Java, HTML and CSS code:k
//[date] [your name] [NEW/MOD/DEL] [efected # of lines] [- short description of the code]

 Example:

 // 11/8/15 JSmith NEW 3L - iterate until values of the exponents, factorials,

 // and the sum have been calculated
for (int i = 1; i < n; i++)
 { term *= x/i; //Console.WriteLine("term={0}", term); // Verify term
 sum += term; }
Note: The comment is indented by 5 spaces!
5. Your code should be high quality i.e. easy to read, well-organized, well-structured, well-commented and well-documented code is worth 20%.
You will lose points for insufficient documentation, unnecessarily complicated code, or bad style. As a general rule, the harder it is for me to understand your code, the more points will be deducted.
a. a well-commented source code listing
b. incorporate your pseudocode into your code as comments
c. comment any variables, constants, methods, classes. Note. Variable, constant, GUI control names and method names should be self-explanatory!!!
i. comment before any loop statement

d. use bold for the key words

e. the source code includes clarity, robustness (error handling for the entered values) and the user interface.

· Each assignment will be submitted in a clear plastic binder with a firmed attached USB flash drive, otherwise you will lose 10%.
NOTE: A printout of entire source code and a single executable program that corresponds to the source code must be submitted along with significant output printouts and a USB drive (thumb drive). The USB drive should contain only the workspace files for the current assignment (the source code, VStudio files, executable file, results and your project submittals document). Each assignment should be submitted in a clear plastic binder with a firm attached USB drive.

II. Assignment Guidelines
1. Problem description

The problem statement or specification of the problem. Assumption if they are applicable.

1a. Input

If your program has a user interface, describe it here. Describe the input data.

1b. Processing

Explains the purpose and the design of your program. It can include discussion the method used to solve the problem.

1c. Output

Describe the output data. Provide the screenshots of your outputs.

2. Every class should be represented by an rectangle - the UML class diagram (see DiagramExamples.doc). Methods should be represented by a flowchart. Every method call will be represented by the following rectangle with the function header in:

3. If the instructor requires it, every method and class should show after the signature (see an example)

a. who calls it

b. whom it will be called.

4. A well-commented source code listing

a. comment any variables, constants, methods, classes

b. comment before any loop statement

c. use bold for the key words.

5. Incorporate your pseudocode into your code as comments.
6. Sample test runs that show the successful execution of your program with appropriate test data.

7. Screen captures must be provided.

8. If applicable, listing of any test data files used as input to your program (capture the screen using ALT + PrntScrn keys).

9. Use “echo printing” i.e. printing out the input values.

10. Allow to enter only valid values (invalid values should be reentered or set up to i.e. zeros) – maintain the object in a consistent state by allowing only valid instance variables) – validity checking (correctness of all input values). You may use try{} catch(Exception e) {Console.Writeline(e) or Console.Writeline(e.Message)}

11. Test the variable boundaries and a value in the middle of each range – possible data values (data coverage)

12. Examine the code (code coverage) – make sure that each method (statement) in the program is executed

13. Repeat essential input values when you provide output values
Avoid repeating the calculation, for example calculation s = s + qª in every iteration of the loop is wasteful. You can do it as follows:

q = 1; s = 0;

for (int a =1; a < n ; a++)
{

q = q * a;

s = s + q;

}
Examples:

Problem Description: Program Rain calculates the average rainfall over a period

of days. The number of days and the rain statistics are in // file Rain.in.

//**

*method GetInches()

* Name: Your Name

* Class: CPMS 378,

* Assignment #: 2, Infinite Series

* Date Due: Today Date

*Description: Number of inches of rain for numberOfDays are read from a file

*and their sum is returned in totalRain.

*Input:

*Type
Variable
Description

int numberOfDays; // number of days in calculation

ifstream rainFile; // data file

*Output:

float totalRain; // total accumulated rain

*Returns:

float totalRain; // total accumulated rain

*Called by:

main()

*Calls:

nothing

//**

We should write programs that are clear, understandable and maintainable first but also we should address the performance, user interface and portability issues to achieve good software engineering.

Data Test :
[image: image1.png]integer
nter integer
Tnvalid integer input. Try again.

nter integer: ghgh
Tnvalid integer input. Try again.

nter integer: 25.1
Tnvalid integer input. Try again.

integer
nter integer:
nter integer:
nter integer

aw

aleulation complete

Press any key to terminate

Jozef Goetz
F’16 CMPS 378
6

