Introduction to Flowcharts and Algorithms and UML class diagram
PART I: Introduction to flowcharts

A flowchart is a graphical representation of an algorithm. These flowcharts play a vital role in the programming of a problem and are quite helpful in understanding the logic of complicated and lengthy problems. Once the flowchart is drawn, it becomes easy to write the program in any high level language. Often we see how flowcharts are helpful in explaining the program to others. Hence, it is correct to say that a flowchart is a must for the better documentation of a complex program.

Flowcharts are usually drawn using some standard symbols; however,

	[image: image10.png]10O

	Start or end of the program

	
	Computational steps or processing function of a program

	
	Input or output operation

	
	Decision making and branching

	
	Connector or joining of two parts of program

 The following are some guidelines in flowcharting:

a. In drawing a proper flowchart, all necessary requirements should be listed out in logical order.

b. The flowchart should be clear, neat and easy to follow. There should not be any room for ambiguity in understanding the flowchart.

c. The usual direction of the flow of a procedure or system is from left to right or top to bottom.

d. Only one flow line should come out from a process symbol.

[image: image1.png]

 or [image: image2.png]

e. Only one flow line should enter a decision symbol, but two or three flow lines, one for each possible answer, should leave the decision symbol.

 [image: image3.png]

 [image: image4.png]

f. Only one flow line is used in conjunction with terminal symbol.

[image: image5.png]

 [image: image6.png]

h. If the flowchart becomes complex, it is better to use connector symbols to reduce the number of flow lines. Avoid the intersection of flow lines if you want to make it more effective and better way of communication.

i. Ensure that the flowchart has a logical start and finish.

j. It is useful to test the validity of the flowchart by passing through it with a simple test data.

PART II: Example of a flowchart:
Problem 1: Write an algorithm and draw the flowchart for finding the average of two numbers

Algorithm:

Input: two numbers x and y

Output: the average of x and y

Steps:

1. input x

2. input y

3. sum = x + y

4. average = sum /2

5. output average

PART III: An exercise
Problem 2: Write an algorithm for finding the area of a rectangle
Hints:

· define the inputs and the outputs

· define the steps

· draw the flowchart

If you have more than one class you should show the relationship graphically. [image: image7.png]

[image: image8.emf]Main

Console.WriteLine(

“Please enter a

positive number of

rows: “);

Rows =

Convert.ToInt32(Co

nsole.Readline());

Rows < 0;

Rows =

Convert.ToInt32(Co

nsole.Readline());

true

Console.WriteLine(

“Please enter a

positive number of

columns: “);

Rows =

Convert.ToInt32(Co

nsole.Readline());

Cols < 0;

Cols =

Convert.ToInt32(Co

nsole.Readline());

true

false

counter = 1

false

counter <=

Cols

header += “ “; dashes += “---“; true counter++

row = 0

row < Rows true

false

col = 0

col < Cols

a[row, col] =

Convert.ToInt32

(Console.ReadLine())

true col++

Console.WriteLine

(“Please enter any

integer: “);

rowSums[row]

+= a[row, col]

colSums[col]

+= a[row, col]

sum +=

a[row, col]

rowr++

false

Console.Write (“{0}

| Sum:\n {1}\n“,

header, dashes);

false

ror = 0

row < Rows true

col = 0

col < Cols true col++

Console.Write

(“{0:D2} “, a[row,

col]);

row++

false

Console.Write (“{0}

| Sum:\n {1}\n“,

header, dashes);

false

Console.Write (“ |

{0:D2 \n}”,

rowSums[row]);

Console.Write (“

{0}\nSum: “, dashes);

Start

element in

colSums

Console.WriteLine

(“{0:D2 }”, element);

true

End

false

Console.WriteLine

(“| {0:D2} = Sum

Total\n“, sum);

catch

(Exception e)

false

Console.WriteLine

(“\n” + e.Message +

“\n”);

true

An example of a flowchart of method Play():

[image: image9.emf]Start

End

Initialize gameStatus,

myPoint, and sumOfDice

Console.WriteLine(“Wins\t

%Wins\t\tLosses\t%Losses\n

{0}\t{1:F2}\t\t {2}\t{3:F2}”,

numWins, percentWins,

numLosses, percentLosses);

int counter = 1

counter <= plays

Console.WriteLine(“Game

Number: {0}”, counter);

sumOfDice = RollDice();

case: SEVEN,

YO_LEVEN

case: SNAKE_EYES,

TREY, BOX_CARS

gameStatus = Status.CONTINUE;

myPoint = sumOfDice;

break;

gameStatus =

Status.WON

break;

break;

true

false

false

true

true

gameStatus ==

Status.CONTINUE

false

sumOfDice = RollDice(); true

sumOfDice = myPoint

gameStatus =

Status.LOST

gameStatus =

Status.WON

sumOfDice = (int)

DiceNames.SEVEN

true

false

gameStatus =

Status.LOST

true

false

gameStatus ==

Status.WON

false

Console.WriteLine(

“ Player wins!\n”);

true numWins++;

Console.WriteLine(

“ Player loses!\n”);

numLosses++; false

myPoint = 0;

gameStatus =

Status.CONTINUE

int counter = 2

counter <

rollSums.Length

counter++;

counter++;

Console.WriteLine(

“Frequency of dice rolls:\n

Sum\tFrequency”);

Console.WriteLine(“ Point is

{0}”, myPoint);

Console.WriteLine(

“{0}\t{1}”, counter,

rollSums[counter]);

true

false

Console.WriteLine(“Average

number of rolls per game:

{0:F2}”, (decimal)

numRolls / plays);

percentWins = ((decimal)

numWins / plays) * 100;

percentWins = ((decimal)

numWins / plays) * 100;

Play()

In the UML class diagram , each class is modeled as a rectangle (or an oval) with three compartments as follows:

START

 x

 y

sum = x + y

average = sum/2

END

Average

Class name: GradeBook

list of variable declarations and properties

count : int = 500

+ <property> CourseName : String

list of methods:

+ <constructor> GradeBook (name : string)

+ DisplayMessage()

- Helper()

+ IsStudentPassed(name: string) : bool

	

_1446241231.vsd
�

�

�

�

Main

Console.WriteLine(“Please enter a positive number of rows: “);

Rows = Convert.ToInt32(Console.Readline());

Rows < 0;

Rows = Convert.ToInt32(Console.Readline());

true

Console.WriteLine(“Please enter a positive number of columns: “);

Rows = Convert.ToInt32(Console.Readline());

Cols < 0;

Cols = Convert.ToInt32(Console.Readline());

true

false

counter = 1

false

counter <= Cols

header += “ “;

dashes += “---“;

true

counter++

row = 0

row < Rows

col = 0

col < Cols

true

Console.WriteLine (“Please enter any integer: “);

a[row, col] = Convert.ToInt32 (Console.ReadLine())

true

false

col++

rowSums[row] += a[row, col]

�

colSums[col] += a[row, col]

�

sum += a[row, col]

�

rowr++

false

Console.Write (“{0} | Sum:\n {1}\n“, header, dashes);

false

ror = 0

row < Rows

true

col = 0

col < Cols

Console.Write (“ | {0:D2 \n}”, rowSums[row]);

true

col++

Console.Write (“{0:D2} “, a[row, col]);

Console.Write (“ {0}\nSum: “, dashes);

Start

element in colSums

Console.WriteLine (“{0:D2 }”, element);

true

row++

false

Console.Write (“{0} | Sum:\n {1}\n“, header, dashes);

false

End

false

Console.WriteLine (“| {0:D2} = Sum Total\n“, sum);

catch (Exception e)

false

Console.WriteLine (“\n” + e.Message + “\n”);

true

_1382296587.vsd
Play()

Start

int counter = 1

counter <= plays

Initialize gameStatus, myPoint, and sumOfDice

End

Console.WriteLine(“Game Number: {0}”, counter);

sumOfDice = RollDice();

case: SEVEN,
YO_LEVEN

case: SNAKE_EYES, TREY, BOX_CARS

gameStatus = Status.CONTINUE;
myPoint = sumOfDice;

break;

gameStatus = Status.WON

gameStatus = Status.WON

break;

break;

true

false

false

true

true

Console.WriteLine(“Wins\t %Wins\t\tLosses\t%Losses\n {0}\t{1:F2}\t\t {2}\t{3:F2}”, numWins, percentWins, numLosses, percentLosses);

gameStatus == Status.CONTINUE

Console.WriteLine(“Frequency of dice rolls:\n Sum\tFrequency”);

false

sumOfDice = RollDice();

true

sumOfDice = myPoint

gameStatus = Status.LOST

sumOfDice = (int) DiceNames.SEVEN

true

false

gameStatus = Status.LOST

true

false

gameStatus == Status.WON

false

Console.WriteLine(“ Player wins!\n”);

true

numWins++;

Console.WriteLine(“ Player loses!\n”);

numLosses++;

false

myPoint = 0;

gameStatus = Status.CONTINUE

int counter = 2

counter < rollSums.Length

counter++;

counter++;

Console.WriteLine(“ Point is {0}”, myPoint);

Console.WriteLine(“{0}\t{1}”, counter, rollSums[counter]);

true

false

Console.WriteLine(“Averagenumber of rolls per game: {0:F2}”, (decimal) numRolls / plays);

percentWins = ((decimal) numWins / plays) * 100;

percentWins = ((decimal) numWins / plays) * 100;

