· Be well organized, so that it is easy to read, edit, and maintain your code

· Be modular and flexible, allowing us to reuse code and patterns as necessary

· Look as if one person wrote it, even if several people contributed
· [Use deep learning approach]
Deep Learning is about learning multiple levels of representation and abstraction that help to make sense of data such as images, sound, and text.
Good Programming Practice
· Write your programs in a simple and straightforward manner.

· This is sometimes referred to as KIS (“keep it simple”).

· One key aspect of keeping it simple is another interpretation of KIS—“keep it small.” Do not “stretch” the language by trying bizarre us​es.
Always test your programs on all systems and in all web browsers for which they are intended.
CODING STYLE GUIDELINES

It is essential to use a consistent style (convention) throughout programs.

Your source code should include styles as follows:

1. INDENTATION AND SPACING

a. Use blank lines to separate statements into related groups. Separate declarations from the rest of a program.

b. Indent the entire body of the functions, and the internal statement(s) of “If”, “For”, “While” etc. Use three spaces per indent.

c. Indent the comment body e.g.

 // read first number from user
number1 = Convert.ToInt32(Console.ReadLine());
d. A lengthy statement may be spread over several lines.
· If a single statement must be split across lines, choose breaking points that make sense, such as after a comma in a comma-separated list or after an operator in a lengthy expression. Use a blank line before & after control structure.
· If a statement is split across two or more lines, indent all subsequent lines with one level of indentation.
2. STYLE NAMES
a. Begin with a lowercase letter and capitalize each successive English letter for identifiers representing variables.

middleInitial, myName.

b. Capitalize all English words in names of programmer-written methods and classes and of programmer-defined data types.

CalcPay(), SampleClassName, DataType.

c. Use lowercase letter in reserved words e.g.

float, integer.

d. Capitalize every letter and use an underscore to separate English words for named (symbolic) constants.

BOOK_TITLE, MAX_HOURS

PROGRAMMING GUIDELINES
1. Prepare before coming to class by reading the assignment beforehand, thinking about how to do it, and asking questions about it.

2. Start early on each assignment. Assignments in computer science, more than in most disciplines, are time-consuming because they include activity (going to the lab, using the computer) besides just reading and writing.. Starting promptly reduces your frustration, since you'll have time to ask questions when difficulties arise, and will have sufficient time to finish the assignment before the due date.

3. Pay close attention to detail. Computing, more than many other disciplines requires precise, literal attention to detail. Take things slowly and deliberately. Wring every bit of information you can out of the assignment description; read assignment description carefully to learn what they require of you.

4. Feel free to experiment. Much of computing is learned by trial and error, trying things out to see what works. Make a copy of that work before doing the experiment. If the experiment goes away, you can use your copy to "back up" to where you were.

5. Don't lose it. Computers can be frustrating-it's challenging to communicate with a dumb machine. If you feel like losing your temper (and nearly everyone who works with computers occasionally does), take a deep breath and remember: It's only a machine. It's only an assignment. It's only a class. Someone is available who can find a way out of your difficulty (especially if you've started early and left adequate time).

6. In summary: Start early, read statement carefully, think about the problem (don’t just start coding), and don’t give up! And Have fun and learn a lot!

Warnings
1. Students may discuss general program design and strategies for solving problems. However, any time you use another person's design or insight, it must be properly credited in the program documentation. This includes crediting algorithm taken from the text or class.

2. You may NEVER give your code or use another person's code: the detailed algorithm and coding must be the student's own.

3. Fabricating output for a program that does not work correctly is also cheating and will result in a zero score for that assignment. Please note that the student giving help in violation of these guidelines will be held as responsible as the student receiving the help. The instructor may at any time ask questions regarding any work submitted.

4. The penalty for any instance of academic dishonesty will range from a zero score for a first occurrence to a failing grade for the course and a notation in your University records for a repeated occurrence.

Adopted from John’s Lee Class Web Site

