Study Guide for the CMPS378 FINAL scheduled on Tuesday, December 15, 2016,
FH 207, at 6:50 pm.

There are two parts of the exam. During the examination you cannot use the Internet, USB flash drives, e-mails, tablets, handheld phones and etc.

1. The first part of the exam will include questions from the Lecture Notes and the textbook, chapters 7-15 (except chapter 9, 12), Self-Review Exercises and Summary of each chapter covered in class (see 5_Table_of_contents_C#2012.pdf). During the first part of the final exam all books will be closed except only Lecture Notes. Lecture Notes can be used after downloading them to your desktop , and then you are supposed to disconnect the Internet cable from your computer. You can use arrow keys, PgUp and PgDn keys on your keyboard only. Students are not allowed to use USB flash drives.
2. The second part of the final, limited to two hours, will cover program examples from chapters 3-15 (except chapter 9, 12) the class and project assignments and all program examples from the Lecture Notes, Books, your own notes and desktop computers can be used. Review examples we did in class and the projects at http://faculty.laverne.edu/~jgoetz/classes/378_F16/examples/ and the examples below as well. The textbook and Lecture Notes can be used but you cannot use USB drives.

Part I. Samples.

Format: Chapter#. Question
See all taken quizzes.
14.Events in C# can be:

a) generated within the code of the program

b) started with a click on a button, or other control

c) generate by keyboard input

d) All of the above

Ans: d

15. LinkLabels are most commonly used for:

a) shortcuts to menu items.

b) links to an Explorer window.

c) links to a Web site.

d) a) & b)

e) b) & c)

Ans: e

Part II.

Expect to create a GUI application.
1. Calculate interest rate after year = 1, 2 , …, max years according to the formula

 amount = principal * (1 + rate / 100) ^ year. Calculate each sequential term base on the
 previous one to get the best calculation performance

 Use the following GUI:

[image: image4.png][interest Calculator EEX
o~ G
e

e [T0E]

Yearly account balance:

‘Amount on Depost
$1.05000
$110250
$115763
$121551
$127628
134010

Solution:

using System;

using System.Windows.Forms;

public partial class interestCalculatorForm : Form

{

// default constructor

 public interestCalculatorForm()

 {

 InitializeComponent();

 }
// end constructor

 private void calculateButton_Click(

 object sender, EventArgs e)

 {

// declare variables to store user input

 decimal principal; // store principal

 double rate; // store interest rate

 int year; // store number of years

 decimal amount; // store amount

 string output; // store output

// retrieve user input

 principal = Convert.ToDecimal(principalTextBox.Text);

 rate = Convert.ToDouble(interestTextBox.Text);

 year = Convert.ToInt32(yearUpDown.Value);

 amount = principal; //initial value

// set output header

 output = "Year\tAmount on Deposit\r\n";

// calculate amount after each year and append to output

 for (int yearCounter = 1; yearCounter <= year; yearCounter++)

 {

 amount = amount * (1 + (decimal)rate / 100);

 output += (yearCounter + "\t" +

 String.Format("{0:C}", amount) + "\r\n");

 } // end for

 displayTextBox.Text = output; // display result

 }
 // end method calculateButton_Click

}
// end class interestCalculatorForm

2. (Rectangle Class) Create class Rectangle. The class has attributes length and width, each of

which defaults to 1. It has read-only properties that calculate the Perimeter and the Area of the

rectangle. It has properties for both length and width. The set accessors should verify that length

and width are each floating-point numbers greater than 0.0 and less than 20.0.Write an application
to test class Rectangle.

Solution:

public class Rectangle
{

 private double length; // the length of the rectangle

 private double width; // the width of the rectangle

 // constructor without parameters

 public Rectangle()

 {

 Length = 1.0;

 Width = 1.0;

 }
// end Rectangle parameterless constructor

 // constructor with length and width supplied

 public Rectangle(double theLength, double theWidth)

 {

 Length = theLength;

 Width = theWidth;

 }
 // end Rectangle two-parameter constructor

// property that gets and sets the length

 public double Length
 {

 get

 {

 return length;

 } // end get

 set

 {

 length = (value > 0.0 && value < 20.0 ? value : 1.0);

 }
// end set

 }
// end property Length

// property that gets and sets the width

 public double Width
 {

 get

 {

 return width;

 } // end get

 set

 {

 width = (value > 0.0 && value < 20.0 ? value : 1.0);

 }
 // end set

 }
// end property Width

 // read-only property that calculates the perimeter

 public double Perimeter
 {

 get

 {

 return 2 * Length + 2 * Width;

 }
// end get

 }
// end property Perimeter

// read-only property that calculates the area

 public double Area
 {

 get

 {

 return Length * Width;

 }
// end get

 }
// end property Area

// convert to string

 public override string ToString()

 {

 return string.Format("{0}: {1}\n{2}: {3}\n{4}: {5}\n{6}: {7}",

 "Length", Length, "Width", Width,

 "Perimeter", Perimeter, "Area", Area);

 }
// end method ToString

}
// end class Rectangle

using System;

public class RectangleTest
{

 public static void Main(string[] args)

 {

 Rectangle rectangle = new Rectangle();

 int choice = GetMenuChoice();

 while (choice != 3)

 {

 switch (choice)

 {

 case 1:

 Console.Write("Enter length: ");

 rectangle.Length = Convert.ToDouble(Console.ReadLine());

 break;

 case 2:

 Console.Write("Enter width: ");

 rectangle.Width = Convert.ToDouble(Console.ReadLine());

 break;

 } // end switch

 Console.WriteLine(rectangle.ToString());

 Console.WriteLine();

 choice = GetMenuChoice();

 } // end while

 } // end Main

// prints a menu and returns a value corresponding to the menu choice

 private static int GetMenuChoice()

 {

 Console.WriteLine("1. Set Length");

 Console.WriteLine("2. Set Width");

 Console.WriteLine("3. Exit");

 Console.Write("Choice: ");

 return Convert.ToInt32(Console.ReadLine());

 } // end method GetMenuChoice

} // end class RectangleTest
[image: image2.png]

3. This example shows how to capture a string from a TextBox.

Write a GUI program that allows the user to enter strings in a TextBox. Each string input is

added to a ListBox. As each string is added to the ListBox, ensure that the strings are in sorted

order. [Use a. property Sorted and b. even handler name: inputTextBox_KeyDown and test if KeyCode equals Keys.Enter then take a string from the TextBox].

[image: image3.emf]
Solution:

//SortForm.cs

// Sorting user input strings in a list box.

using System;

using System.Windows.Forms;

public partial class SortForm : Form

 {

 // default constructor

 public SortForm()

 {

 InitializeComponent();

 }
// end constructor

// handles inputTextBox

private void inputTextBox_KeyDown(object sender, KeyEventArgs e)

 {

if (e.KeyCode == Keys.Enter) // test whether the Enter key pressed
 {

 // add user input to the listbox

outputListBox.Items.Add(inputTextBox.Text);

 // sort the object array containing the items in the list box

 outputListBox.Sorted = true;

 //clear text box

 inputTextBox.Text = "";

 } // end if

 } // end method inputTextBox_KeyDown

 } // end class SortForm
4. Windows Application of Length Conversion Calculator: ft (m or in (cm or lb (kg or a similar nature.
5. Move/Copy/Delete/Add items between GUI controls: Label, ListBox, ComboBox, CheckedListBox.
In the UML, each class is modeled in a class diagram as a rectangle (or an oval) with three compartments as follows:

[image: image1]
Click to increase

number of years

Click to decrease

number of years

NumericalUpDown control

Class name: GradeBook

list of variable declarations and properties

count : int = 500

+ <property> CourseName : String

list of methods:

+ <constructor> GradeBook (name : string)

+ DisplayMessage()

- Helper()

+ IsStudentPassed(name: string) : bool

	

